Toscead betweox fadungum "Rīmagiefung"

Content deleted Content added
Gottistgut (motung | forðunga)
No edit summary
Xqbot (motung | forðunga)
ly Robot ēcung: so:Aljebra; cosmetic changes
Líne 1:
'''Stæfrīmtācning''' (on [[Nīwum Englisce]] hāteþ ''algebra'') is dǣl [[rīmcræft]]es be þǣre cnēorlǣcinge þāra laga of [[weorcing (on rīmcræfte)|woercinge]] and [[gesibbness (on rīmcræfte)|gesibbnessum]], and þǣm timbrum and oncnāwnessum þe arīsaþ from heom, begānde [[besetednessa (on rīmcræfte)|besetednessa]], [[manigsetednessa]], [[efenweorðfindung]]a and [[stæfrīmtācningisc timber|stæfrīmtācningisce timbras]]. Andefen [[eorþmet]]es, [[rīmcræftlic arāflung|arāflungarāflunge]]e, [[stōwlār]]e, [[tellingalār]]a, and [[rīma flītcræft]]es is stæfrīmtācning ān þāra hēafodlicena dǣla [[smǣte rīmlār|smǣtre rīmlāre]].
 
Þæt dǣl stæfrīmtācninge gehāten [[grundstaðoliende stæfrīmtācning]] is oft dǣl þǣre lāre in [[ōðerlic lǣrung|ōðerlicre lǣrunge]] and inlǣdeþ þā oncnāwnesse [[missenrīm (on rīmcræfte)|missenrīma]] þe tācniaþ [[rīm]]. Cwidas gestaðolode on þissum missenrīmum sind gestēorede notiende þā laga weorcinga þā mann mæg wyrcan mid rīmum, swelce [[ēacnung (on rīmcræfte)]]. Þis mæg wesan gedōn for missenlicum intingum, befōnde [[efenweorþfindung]]. Stæfrīmtācning is swīðe brādre þonne grundstaðoliende stæfrīmtācning; hēo is sēo cnēorlǣcing þæs gelimpeþ þǣr missenlica laga weorcinge sind gebrocen and þǣr weorcinga sind worht tō ōðrum þingum ōðer rīm. <!--Ēacnung and [[manigfealding]] cunnon wesan brǣded and heora forrihtan tōmearcunga inlǣdaþ [[stæfrīmtācningisc timber|stæfrīmtācningisce timbras]] swelce [[þrēat (on rīmlāre)|þrēatas]], [[hring (on rīmlāre)|hringas]] and [[feld (on rīmlāre)|felda]], þe sind cnēorlǣht on þǣm dǣle rīmlāre þe hāteþ [[brād stæfrīmtācing]].
Líne 76:
'''[[Commutative operation|Commutativity]]''': Addition of integers also has a property called commutativity. That is, the order of the numbers to be added does not affect the sum. For example: 2+3=3+2. In general, this becomes ''a'' ∗ ''b'' = ''b'' ∗ ''a''. Only some binary operations have this property. It holds for the integers with addition and multiplication, but it does not hold for [[matrix multiplication]] or [[Quaternion|quaternion multiplication]] .
 
=== Groups&mdash;structuresGroups—structures of a set with a single binary operation ===
{{main|Group (mathematics)}} {{see also|Group theory|Examples of groups}}
 
Líne 193:
All groups are monoids, and all monoids are semigroups.
 
=== Rings and fields&mdash;structuresfields—structures of a set with two particular binary operations, (+) and (×) ===
{{main|ring (mathematics)|field (mathematics)}} {{see also|Ring theory|Glossary of ring theory|Field theory (mathematics)|glossary of field theory}}
 
Líne 218:
* I.N. Herstein: ''Topics in Algebra''. ISBN 0-471-02371-X
* R.B.J.T. Allenby: ''Rings, Fields and Groups''. ISBN 0-340-54440-6
* [[L. Euler]]: ''[http://web.mat.bham.ac.uk/C.J.Sangwin/euler/ Elements of Algebra]'', ISBN 978-1-89961899618-87373-6
* Isaac Asimov ''Realm of Algebra'' (Houghton Mifflin), 1961-->
 
Líne 311:
[[sk:Algebra]]
[[sl:Algebra]]
[[so:Aljebra]]
[[sq:Algjebra]]
[[sr:Алгебра]]